

By

Dr. Santhosh Kumar Allemki

Dr. Shatrughna Prasad Yadav

Dr. Vijayasaro Vijayaregunathan

Dr. G Kiranmaye

Fundamentals of

Digital Electronics

TABLE OF CONTENTS

CHAPTER 1 NUMBER SYSTEM

1.1 Review of Number Systems 1

 1.1.1 Decimal system 2

 1.1.2 Binary System 2

 1.1.3 Octal System 3

 1.1.4 Hexadecimal System 3

1.2 Code Conversion

3

1.3 1’s and 2’s complement 6

1.4 Arithmetic Operations 7

1.5 Binary Codes 8

1.6 Code Converters 11

CHAPTER 2 BOOLEAN ALGEBRA 31

2.1 Fundamental postulates of Boolean algebra 31

2.2 Basic Theorems 32

2.3 Properties of Boolean algebra 33

2.4 Boolean Functions 35

2.5 Complement of A Function 36

2.6 Logic Gates 37

 2.6.1 Basic Logic Gates 37

 2.6.2 UNIVERSAL GATES 38

2.7 Canonical and Standard Forms 43

CHAPTER 3 KARNAUGH MAP MINIMIZATION 47

3.1 Two- Variable, Three Variable and Four Variable Maps 47

3.2 Grouping cells for Simplification 49

3.3 Don’t care Conditions 57

3.4 Five- Variable Maps: 59

3.5 Two Level Gate Network 62

CHAPTER 4 COMBINATIONAL CIRCUITS 65

4.1 Introduction 65

4.2 Design Procedure 66

4.3 Arithmetic Circuits – Basic Building Blocks 66

 4.3.1 Half-Adder 66

 4.3.2 Full-Adder 67

 4.3.3 Half -Subtractor 70

 4.3.4 Full Subtractor 71

4.4 Binary Adder (Parallel Adder): 74

4.5 Carry Propagation–Look-Ahead Carry Generator 75

4.6 Binary Subtractor (Parallel Subtractor) 77

4.7 Parallel Adder/ Subtractor 78

4.8 Decimal Adder (BCD Adder): 79

4.9 Magnitude Comparator 81

4.10 Decoder 83

4.11 Encoders 86

4.12 Multiplexer 90

4.13 Demultiplexer 95

1

CHAPTER 1

NUMBER SYSTEM

1.1Review of Number Systems:

 Many number systems are in use in digital technology. The most common are the

decimal, binary, octal, and hexadecimal systems. The decimal system is clearly the

most familiar to us because it is tools that we use every day.
Types of Number Systems are

• Decimal Number system
• Binary Number system

• Octal Number system

• Hexadecimal Number system

Table 1.1 Types of Number Systems

DECIMAL BINARY OCTAL HEXADECIMAL

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

2

Table 1.2 Number system and their Base value

System Base Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexa Decimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

1.1.1 Decimal system:

 Decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3,
4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The

decimal system is also called the base-10 system because it has 10 digits. Even though the
decimal system has only 10 symbols, any number of any magnitude can be expressed by using

our system of positional weighting.

103 102 101 100 10-1 10-2 10-3

=1000 =100 =10 =1 . =0.1 =0.01 =0.001

Most

Significant

Digit

 Decimal

point

 Least

Significant

Digit

Example: 3.1410, 5210,102410

1.1.2 Binary System:

 In the binary system, there are only two symbols or possible digit values, 0 and 1. This

base-2 system can be used to represent any quantity that can be represented in decimal or other
base system.

23 22 21 20 2-1 2-2 2-3

=8 =4 =2 =1 . =0.5 =0.25 =0.125

Most
Significant

Digit

 Binary point Least
Significant

Digit

 In digital systems the information that is being processed is usually presented in binary

form. Binary quantities can be represented by any device that has only two operating states or
possible conditions. E.g.. A switch is only open or closed. We arbitrarily (as we define them)

let an open switch represent binary 0 and a closed switch represent binary 1. Thus we can
represent any binary number by using series of switches.

Binary 1: Any voltage between 2V to 5V Binary 0: Any voltage between 0V to 0.8V

Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and TTL Logic, this may cause error
in a digital circuit. Today's digital circuits works at 1.8 volts, so this statement may not hold

3

true for all logic circuits.

1.1.3 Octal System:

 The octal number system has a base of eight, meaning that it has eight possible

digits: 0,1,2,3,4,5,6,7.

83 82 82 81 80 8-1 8-2 8-3

=512 =64 =8 =1 . =1/8 =1/64 =1/512

Most
Significant

Digit

 Octal
point

 Least
Significant

Digit

1.1.4 Hexadecimal System:

 The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the

digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

163 162 161 160 16-1 16-2 16-3

=4096 =256 =16 =1 . =1/16 =1/256 =1/4096

Most

Significant
Digit

 Hexadeci

mal point

 Least

Significant
Digit

1.2 Code Conversion

Converting from one code form to another code form is called code conversion, like

converting from binary to decimal or converting from hexadecimal to decimal.

• Binary-To-Decimal Conversion: Any binary number can be converted to its decimal

equivalent simply by summing together the weights of the various positions in the binary
number which contain a 1.

Binary Decimal

110112

= (1*24)+(1*23)+0+(1*21)+(1*20) =16+8+0+2+1

Result 2710

• Decimal to binary Conversion:

There are 2 methods:

• Reverse of Binary-To-Decimal Method

• Repeat Division

http://csetube.weebly.com/

4

 Reverse of Binary-To-Decimal Method

Decimal Binary

4510 =32 + 0 + 8 + 4 +0 + 1

 =25+0+23+22+0+20

Result =1011012

 Repeat Division-Convert decimal to binary: This method uses repeated division by 2.

Division Remainder Binary

25/2 = 12+ remainder of 1 1 (Least Significant Bit)

12/2 = 6 + remainder of 0 0

6/2 = 3 + remainder of 0 0

3/2 = 1 + remainder of 1 1

1/2 = 0 + remainder of 1 1 (Most Significant Bit)

Result 2510 = 110012

• Binary-To-Octal / Octal-To-Binary Conversion Binary to octal

100 111 0102 = (100) (111) (010)2 = 4 7 28

 Octal to Binary

• Decimal -To-Octal / Octal-To- Decimal Conversion Decimal to octal

Division Result Binary

177/8 = 22+ remainder of 1 1 (Least Significant Bit)

22/ 8 = 2 + remainder of 6 6

2 / 8 = 0 + remainder of 2 2 (Most Significant Bit)

Result 17710 = 2618

Binary = 0101100012

5

Octal to Decimal

 Hexadecimal to Decimal/Decimal to Hexadecimal Conversion

• Decimal to Hexadecimal

Division Result Hexadecimal

378/16 = 23+ remainder of 10 A (Least Significant Bit)23

23/16 = 1 + remainder of 7 7

1/16 = 0 + remainder of 1 1 (Most Significant Bit)

Result 378 10 = 17A 16

• Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

Binary-To-Hexadecimal: 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

Hexadecimal to binary

• Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

• Convert Octal (Hexadecimal) to Binary first.

• Regroup the binary number by three bits per group starting from LSB if Octal is

required.

• Regroup the binary number by four bits per group starting from LSB if

Hexadecimal is required.

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

6

Octal to Hexadecimal

Octal Hexadecimal

= 2 6 5 0

010 110 101 000 = 0101 1010 1000 (Binary)

Result =(5A8)16

Hexadecimal to octal

Hexadecimal Octal

(5A8)16 = 0101 1010 1000 (Binary)
 = 010 110 101 000 (Binary)

Result = 2 6 5 0 (Octal)

1.3 1’s and 2’s complement

Complements are used in digital computers to simplify the subtraction operation and
for logical manipulation. There are TWO types of complements for each base-r system: the

radix complement and the diminished radix complement. The first is referred to as the r's
complement and the second as the (r - 1)'s complement, when the value of the base r is

substituted in the name. The two types are referred to as

The 2's complement and 1's complement for binary numbers and the 10’s complement
and 9's

complement for decimal numbers.

• The 1’s complement of a binary number is the number that results when we

change all 1’s to zeros and the zeros to ones.

• The 2’s complement is the binary number that results when we add 1 to the 1’s

complement. It is used to represent negative numbers.

2’s complement=1’s complement+1

Example 1) : Find 1’s complement of (1101)2
1 1 0 1 number

0 0 1 0 1’s complement

Example 2) : Find 1’s complement of (1001)2
1 0 0 1 number

0 1 1 0 1’s complement
+ 1

= 0 1 1 1

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

7

1.4 Arithmetic Operations

Binary Equivalents

1 Nybble (or nibble) = 4 bits 1 Byte = 2 nibbles = 8 bits

1 Kilobyte (KB) = 1024 bytes

1 Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes
1 Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes

Binary Addition

Rules of Binary Addition

• 0 + 0 = 0

• 0 + 1 = 1

• 1 + 0 = 1

• 1 + 1 = 0, and carry 1 to the next more significant bit

Example: 00011010 + 00001100 = 00100110

Binary Subtraction

Rules of Binary Subtraction

• 0 - 0 = 0

• 0 - 1 = 1, borrow 1 from the next bit

• 1 - 0 = 1

• 1 - 1 = 0

Example:

00100101 - 00010001= 00010100 0 0 1 0 0 1 0 1

 + 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

8

Binary Multiplication

Rules of Binary Multiplication

• 0 x 0 = 0

• 0 x 1 = 0

• 1 x 0 = 0

• 1 x 1 = 1, and no carry or borrow bits
Example

00101001 × 00000110 = 11110110

1.5 Binary Codes

Binary codes are codes which are represented in binary system with modification from

the original ones. There are two types of binary codes: Weighted codes and non-weighted
codes. BCD and the 2421 code are examples of weighted codes. In a weighted code, each

bit position is assigned a weighting factor in such a way that each digit ca n be evaluated by

adding the weight of all the 1’s in the coded combination. Types of Binary Codes are

• Weighted Codes

• Non Weighted Codes

• Reflective Codes

• Sequential Codes

• Error Detecting and Correction Codes

• Alphanumeric Codes

Weighted Code

• 8421 code , Most common, Default

• The corresponding decimal digit is determined by adding the weights associated with
 the 1s in the code group. 62310 = 0110 0010 0011

2421, 5421,7536, etc… codes
• The weights associated with the bits in each code group are given by the name of the

code

 0 0 1 0 1 0 0 1

× 0 0 0 0 0 1 1 0

 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 +

0 1 0 1 0 0 1 +

0 1 1 1 1 0 1 1 0

9

Non weighted Codes

• 2421 code: This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number is

represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the
2421 code represents the decimal numbers from 0 to 9.

• 5211 codes: This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number

is represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the
5211 code represents the decimal numbers from 0 to 9.

Reflective code :

 A code is said to be reflective when code for 9 is complement for the code for 0, and so is

for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective,
whereas the 8421 code is not.

Sequential code :

 A code is said to be sequential when two subsequent codes, seen as numbers in binary

representation, differ by one. This greatly aids mathematical manipulation of data. The 8421
and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

• Excess-3 code: Excess-3 is a non weighted code used to express numbers. The

code derives its corresponding 8421 code plus 0011(3).

 Example: 1000 of 8421 = 1011 in Excess-3

Gray code :

 The gray code belongs to a class of codes called minimum change codes, in which
only one bit in the code changes when moving from one code to the next. The Gray code is

non-weighted code, as the position of bit does not contain any weight. In digital Gray code has

got a special place. The gray code is a reflective digital code which has the special property
that any two subsequent numbers codes differ by only one bit. This is also called a unit-distance code.

Important when an analog quantity must be converted to a digital representation. Only one-bit changes

between two successive integers which are being coded.

Decimal Number Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

10

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Error Detecting and Correction Codes

• Error detecting codes : When data is transmitted from one point to another, like in wireless

transmission, or it is just stored, like in hard disks and there are chances that data may get
corrupted. To detect these data errors, we use special codes, which are error detection codes.

• Error correcting code : Error-correcting codes not only detect errors, but also correct them.

This is used normally in Satellite communication, where turn-around delay is very high as is
the probability of data getting corrupt.

• Hamming codes : Hamming code adds a minimum number of bits to the data transmitted in
a noisy channel, to be able to correct every possible one-bit error. It can detect (not correct)

two-bit errors and cannot distinguish between 1-bit and 2-bits inconsistencies. It can't - in
general - detect 3(or more)-bits errors.

• Parity codes : A parity bit is an extra bit included with a message to make the total number
of 1’s either even or odd. In parity codes, every data byte, or nibble (according to how user

wants to use it) is checked if they have even number of ones or even number of zeros. Based

on this information an additional bit is appended to the original data. Thus if we consider 8-
bit data, adding the parity bit will make it 9 bit long.

At the receiver side, once again parity is calculated and matched with the received parity (bit
9), and if they match, data is ok, otherwise data is corrupt.

Two types of parity

1) Even parity: Checks if there is an even number of ones; if so, parity bit is zero.
When the number of one’s is odd then parity bit is set to 1.

2) Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When
the number of one’s is even then parity bit is set to 1.

Alphanumeric codes:

 The binary codes that can be used to represent the letters of the alphabet, numbers and

mathematical symbols, punctuation marks are known as alphanumeric codes or character
codes. These codes enable us to interface the input-output devices like the keyboard, printers,

video displays with the computer.

• ASCII codes : Codes to handle alphabetic and numeric information, special symbols,

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

11

punctuation marks, and control characters. ASCII (American Standard Code for Information
Interchange) is the best known. Unicode – a 16-bit coding system provides for foreign

languages, mathematical symbols, geometrical shapes, dingbats, etc. It has become a world
standard alphanumeric code for microcomputers and computers. It is a 7-bit code representing

128 different characters. These characters represe upper case letters (A to Z), 26 lowercase

letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 33 control characters.

• EBCDIC codes : EBCDIC stands for Extended Binary Coded Decimal Interchange. It is

mainly used with large computer systems like mainframes. EBCDIC is an 8-bit code and thus
accommodates up to 256 characters. An EBCDIC code is divided into two portions: 4 zone bits

(on the left) and 4 numeric bits (on the right).

Example 1: Give the binary, BCD, Excess-3, gray code representations of numbers: 5,8,14.

Decimal Number Binary code BCD code Excess-3 code Gray code

5 0101 0101 1000 0111

8 1000 1000 1011 1100

14 1110 0001 0100 0100 0111 1001

Example 2: Binary To Gray Code Conversion

 1 + 0 + 0 + 1 + 0 (Binary)

 1 1 0 1 1 (Gray)

Example 3: Gray Code To Binary Code Conversion

 1 1 0 1 1 (Gray)

 1 0 0 1 0 (Binary)

1.6 Code Converters:

Code to another code of binary code. The following are some of the most commonly used

code converters:

• Binary-to-Gray code

• Gray-to-Binary code

• BCD-to-Excess-3

• Excess-3-to-BCD

http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/
http://csetube.weebly.com/

12

• Binary-to-BCD

• BCD-to-binary

• Gray-to-BCD

• BCD-to-Gray

• 8 4 -2 -1 to BCD converter

Binary to Gray Converters:

 The gray code is often used in digital systems because it has the advantage that only one

bit in the numerical representation changes between successive numbers. The truth table for the

binary-to-gray code converter is shown below,

Truth table

Decimal

Binary code Gray code

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

13

K-map simplification:

Now, the above expressions can be implemented using EX-OR gates as,

Logic Diagram:

14

Gray to Binary Converters:

The truth table for the gray-to-binary code converter is shown below,

Truth table:

Gray code Binary code

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

1 0 0 0 1 1 1 1

1 0 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1

1 1 0 0 1 0 0 0

1 1 0 1 1 0 0 1

1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

From the truth table, the logic expression for the binary code outputs can be written as,

G3= ∑m (8, 9, 10, 11, 12, 13, 14, 15)

G2= ∑m (4, 5, 6, 7, 8, 9, 10, 11)

G1= ∑m (2, 3, 4, 5, 8, 9, 14, 15)

G0= ∑m (1, 2, 4, 7, 8, 11, 13, 14)

K-map Simplification:

From the above K-map,

15

Now, the above expressions can be implemented using EX-OR gates as,

Fig. Logic diagram of 4-bit gray-to-binary converter

BCD –to-Excess-3 Converters:

 Excess-3 is a modified form of a BCD number. The excess-3 code can be derived from the

natural BCD code by adding 3 to each coded number.For example, decimal 12 can be

represented in BCD as 0001 0010. Now adding 3 to each digit we get excess-3 code as 0100

0101 (12 in decimal). With this information the truth table for BCD to Excess-3 code converter

can be determined as,

16

Truth Table

Decimal

BCD code Excess-3 code

B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

From the truth table, the logic expression for the Excess-3 code outputs can be written as,

E3= ∑m (5, 6, 7, 8, 9) + ∑d (10, 11, 12, 13, 14, 15)

E2= ∑m (1, 2, 3, 4, 9) + ∑d (10, 11, 12, 13, 14, 15)

E1= ∑m (0, 3, 4, 7, 8) + ∑d (10, 11, 12, 13, 14, 15)

E0= ∑m (0, 2, 4, 6, 8) + ∑d (10, 11, 12, 13, 14, 15)

K-map Simplification

17

Logic Diagram:

18

Excess-3 to BCD Converter: Truth table:

Decimal
Excess-3 code BCD code

E3 E2 E1 E0 B3 B2 B1 B0

3 0 0 1 1 0 0 0 0

4 0 1 0 0 0 0 0 1

5 0 1 0 1 0 0 1 0

6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 0 1 0 1

9 1 0 0 1 0 1 1 0

10 1 0 1 0 0 1 1 1

11 1 0 1 1 1 0 0 0

12 1 1 0 0 1 0 0 1

From the truth table, the logic expression for the Excess-3 code outputs can be written as,

B3= ∑m (11, 12) + ∑d (0, 1, 2, 13, 14, 15)

B2= ∑m (7, 8, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)

B1= ∑m (5, 6, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)

B0= ∑m (4, 6, 8, 10, 12) + ∑d (0, 1, 2, 13, 14, 15)

K-map Simplification

Now, the above expressions the logic diagram can be implemented as,

19

Logic Diagram:

BCD –to-Binary Converters:

The steps involved in the BCD-to-binary conversion process are as follows:

• The value of each bit in the BCD number is represented by a binary equivalent or weight.

• All the binary weights of the bits that are 1‘s in the BCD are added.

• The result of this addition is the binary equivalent of the BCD number. Two-digit decimal
values ranging from 00 to 99 can be represented in BCD by two 4-bit code groups. For

example, 1910 is represented as,

The left-most four-bit group represents 10 and right-most four-bit group represents 9. The

binary representation for decimal 19 is 1910 = 110012.

20

BCD Code Binary

B4 B3 B2 B1 B0 E D C B A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 1

0 0 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 0 0 0 1 1 0

0 0 1 1 1 0 0 1 1 1

0 1 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 0 1

1 0 0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0 1 1

1 0 0 1 0 0 1 1 0 0

1 0 0 1 1 0 1 1 0 1

1 0 1 0 0 0 1 1 1 0

1 0 1 0 1 0 1 1 1 1

1 0 1 1 0 1 0 0 0 0

1 0 1 1 1 1 0 0 0 1

1 1 0 0 0 1 0 0 1 0

1 1 0 0 1 1 0 0 1 1

K-map Simplification:

21

22

From the above K-map,
A= B0

B= B1B4‘+ B1’B4
 = B1 Ex-OR B4

C= B4’B2 + B2B1’ + B4B2’B1

D= B4’B3 + B4B3’B2’ + B4B3’B1’ E= B4B3 + B4B2B1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

23

Binary to BCD Converter:

The truth table for binary to BCD converter can be written as,

Truth Table

Decimal
Binary Code BCD Code

D C B A B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 1

2 0 0 1 0 0 0 0 1 0

3 0 0 1 1 0 0 0 1 1

4 0 1 0 0 0 0 1 0 0

5 0 1 0 1 0 0 1 0 1

6 0 1 1 0 0 0 1 1 0

7 0 1 1 1 0 0 1 1 1

8 1 0 0 0 0 1 0 0 0

9 1 0 0 1 0 1 0 0 1

10 1 0 1 0 1 0 0 0 0

11 1 0 1 1 1 0 0 0 1

12 1 1 0 0 1 0 0 1 0

13 1 1 0 1 1 0 0 1 1

14 1 1 1 0 1 0 1 0 0

15 1 1 1 1 1 0 1 0 1

From the truth table, the logic expression for the BCD code outputs can be written as,

B0= ∑m (1, 3, 5, 7, 9, 11, 13, 15)

B1= ∑m (2, 3, 6, 7, 12, 13)

B2= ∑m (4, 5, 6, 7, 14, 15)

B3= ∑m (8, 9)

B4= ∑m (10, 11, 12, 13, 14, 15)

K-map Simplification:

24

From the above K-map, the logical expression can be obtained as,

B0= A

B1= DCB’+ D’B B2= D’C+ CB B3= DC’B’

B4= DC+ DB

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

25

Gray to BCD Converter:

The truth table for gray to BCD converter can be written as,

Truth Table:

Gray Code BCD Code

G3 G2 G1 G0 B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 1 0 0 0 1 0

0 0 1 0 0 0 0 1 1

0 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 0 1

0 1 0 1 0 0 1 1 0

0 1 0 0 0 0 1 1 1

1 1 0 0 0 1 0 0 0

1 1 0 1 0 1 0 0 1

1 1 1 1 1 0 0 0 0

1 1 1 0 1 0 0 0 1

1 0 1 0 1 0 0 1 0

1 0 1 1 1 0 0 1 1

1 0 0 1 1 0 1 0 0

1 0 0 0 1 0 1 0 1

K-map Simplification:

26

From the above K-map, the logical expression can be obtained as,

B0= G’2G1+ G’3G2G’1 B2= G’3G2+ G3G’2G’1 B3= G3G2G’1

B4= G3G’2+ G3G1

Now, from the above expressions the logic diagram can be implemented as,

Logic Diagram:

27

BCD to Gray Converter:

The truth table for gray to BCD converter can be written as,

Truth table
BCD Code (8421) Gray code

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

K-map Simplification:

Now, from the above expressions the logic diagram can be implemented as,

28

Logic Diagram:

8 4 -2 -1 to BCD Converter:

The truth table for 8 4 -2 -1 to BCD converter can be written as,

Truth Table

Gray Code BCD Code

D C B A B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1

0 1 1 0 0 0 0 1 0

0 1 0 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

1 0 1 1 0 0 1 0 1

1 0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 1 1

1 0 0 0 0 1 0 0 0

1 1 1 1 0 1 0 0 1

1 1 1 0 1 0 0 0 0

1 1 0 1 1 0 0 0 1

1 1 0 0 1 0 0 1 0

K-map Simplification:

29

From the above K-map, the logical expression can be obtained as,

B0= A

B1= A’B’CD+ (A Ex-OR B) (C’+D’)

B2= D’CB’A’+ C’ (A+B)

B3= D (ABC+ A’B’C’)

B4= CD (A’+B’)

30

Logic Diagram:

31

UNIT 2

BOOLEAN ALGEBRA

 In 1854, George Boole, an English mathematician, proposed algebra for symbolically

representing problems in logic so that they may be analyzed mathematically. The

mathematical systems founded upon the work of Boole are called Boolean algebra in his honor.

2.1 Fundamental postulates of Boolean algebra:

 The postulates of a mathematical system forms the basic assumption from which it is

possible to deduce the theorems, laws and properties of the system.

The most common postulates used to formulate various structures are

Closure:

 A set S is closed w.r.t. a binary operator, if for every pair of elements of S, the binary

operator specifies a rule for obtaining a unique element of S.The result of each operation with

operator (+) or (.) is either 1 or 0 and 1, 0 ЄB.

Identity element:

e* x = x * e = x

Eg: 0+ 0 = 0 0+ 1 = 1+ 0 = 1 a) x+ 0= x

1 . 1 = 1 1 . 0 = 0 . 1 = 1 b) x. 1 = x

Commutative law:

 A binary operator * on a set S is said to be commutative if,

x * y = y * x

Eg: 0+ 1 = 1+ 0 = 1 a) x+ y= y+ x

0 . 1 = 1 . 0 = 0 b) x. y= y. x

Distributive law:

 If * and • are two binary operation on a set S, • is said to be distributive over +

whenever,

32

x . (y+ z) = (x. y) + (x. z)

Similarly, + is said to be distributive over • whenever,

x + (y. z) = (x+ y). (x+ z)

Inverse:

a) x+ x’ = 1, since 0 + 0’ = 0+ 1 and 1+ 1’ = 1+ 0 = 1

b) x. x’ = 1, since 0 . 0’ = 0. 1 and 1. 1’ = 1. 0 = 0

Summary:

Postulates of Boolean algebra:

POSTULATES (a) (b)

Postulate 2 (Identity) x + 0 = x x . 1 = x

Postulate 3 (Commutative) x+ y = y+ x x . y = y. x

Postulate 4 (Distributive) x (y+ z) = xy+ xz x+ yz = (x+ y). (x+ z)

Postulate 5 (Inverse) x+x’ = 1 x. x’ = 0

2.2 Basic Theorems:

 The theorems, like the postulates are listed in pairs; each relation is the dual of the one

paired with it. The postulates are basic axioms of the algebraic structure and need no proof.

The theorems must be proven from the postulates. The proofs of the theorems with one variable

are presented below. At the right is listed the number of the postulate that justifies each step

of the proof.

1a) x+ x = x

1b) x. x = x

2) x .0 = 0
3) (x’)’ = x

Absorption Theorem:

x+ xy = x

x+ xy = x. 1 + xy

= x (1+ y)

by postulate 2(b) [x. 1 = x]

4(a) [x (y+z) = (xy)+ (xz)]

= x (1) ------- by theorem 2(a [x+ 1 = x]

= x. ------- by postulate 2(a)[x. 1 = x]

x. (x+ y) = x

x. (x+ y) = x. x+ x. y --------- 4(a) [x (y+z) = (xy)+ (xz)]

33

= x + x.y ---------- by theorem 1(b) [x. x = x]

= x. ----------- by theorem 4(a) [x+ xy = x]

x+ x’y = x+ y

x+ x’y = x+ xy+ x’y ------------------- by theorem 4(a) [x+ xy = x]

= x+ y (x+ x’)--- by postulate 4(a) [x (y+z) = (xy)+ (xz)]

= x+ y (1) ------------------- 5(a)[x+ x’ = 1]

= x+ y ------------------- 2(b)[x. 1= x]

x. (x’+y) = xy

x. (x’+y) = x.x’+ xy --------- by postulate 4(a) [x (y+z) = (xy)+ (xz)]

= 0+ xy -------------------5(b) [x. x’ = 0]

= xy. -------------------2(a) [x+ 0= x]

2.3 Properties of Boolean algebra:

Commutative property:

 Boolean addition is commutative, given by

x+ y = y+ x

 According to this property, the order of the OR operation conducted on the variables

makes no difference. Boolean algebra is also commutative over multiplication given by,

x. y = y. x

This means that the order of the AND operation conducted on the variables makes no

difference.

Associative property:

 The associative property of addition is given by,

A+ (B+ C) = (A+B) + C

 The OR operation of several variables results in the same, regardless of the grouping

of the variables. The associative law of multiplication is given by,

A. (B. C) = (A.B) . C

It makes no difference in what order the variables are grouped during the AND operation of

several variables.

Distributive property:

 The Boolean addition is distributive over Boolean multiplication, given by

A+ BC = (A+B) (A+C)

 The Boolean addition is distributive over Boolean addition, given by

34

A. (B+C) = (A.B)+ (A.C)

Duality:

 It states that every algebraic expression deducible from the postulates of Boolean

algebra remains valid if the operators and identity elements are interchanged.

If the dual of an algebraic expression is desired, we simply interchange OR and

AND operators and replace 1’s by 0’s and 0’s by 1’s.

x+ x’ = 1 is x. x’ = 0

Duality is a very important property of Boolean algebra.

Summary:

Theorems of Boolean algebra:

 THEOREMS (a) (b)

1

Idempotent

x + x = x x . x = x

x + 1 = 1 x . 0 = 0

2 Involution (x’)’ = x

3 Absorption
x+ xy = x x (x+ y) = x

x+ x’y = x+ y x. (x’+ y)= xy

4 Associative x+(y+ z)= (x+ y)+ z x (yz) = (xy) z

5 DeMorgan’s Theorem (x+ y)’= x’. y’ (x. y)’= x’+ y’

DeMorgan’s Theorems:

 Two theorems that are an important part of Boolean algebra were proposed by DeMorgan.

The first theorem states that the complement of a product is equal to the sum of the

complements.

(AB)’ = A’+ B’

The second theorem states that the complement of a sum is equal to the product of the

complements.

(A+ B)’ = A’. B’

Consensus Theorem:

 In simplification of Boolean expression, an expression of the form AB+ A’C+ BC, the

term BC is redundant and can be eliminated to form the equivalent expression AB+ A’C. The

theorem used for this simplification is known as consensus theorem and is stated as,

AB+ A’C+ BC = AB+ A’C

The dual form of consensus theorem is stated as,

(A+B) (A’+C) (B+C) = (A+B) (A’+C)

35

2.4 Boolean Functions:

Minimization of Boolean Expressions:

 The Boolean expressions can be simplified by applying properties, laws and

theorems of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals:

1. x (x’+y)

= xx’+ xy [x. x’= 0]

= 0 + xy [x+ 0 = x]

= xy.

2. x+ x’y

= x + xy + x’y [x+ xy= x]

= x+ y (x+x’)

= x+ y (1) [x+ x’ = 1]

= x+ y.

3. (x+ y) (x’+ z) (y+ z)

= (x+ y) (x’+ z) [dual form of consensus theorem,

(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C)]

4. x’y+ xy+ x’y’

= y (x’+ x) + x’y’ [x (y+ z) = xy+ xz]

= y (1) + x’y’ [x+ x’ = 1]

= y+ x’y’ [x+ x’y’ = x+ y’]

= y+ x’.

5. x+ xy’+ x’y

= x (1+ y’)+ x’y

= x (1) + x’y [1+ x = 1]

= x+ x’y [x+ x’y = x+ y]

= x+ y.

6. AB + (AC)' + AB’C (AB + C)

= AB + (AC)' + AAB'BC + AB'CC

= AB + (AC)' + 0+ AB'CC [B.B' = 0]

= AB + (AC)' + AB'C [C.C = 1]

= AB + A' + C' +AB'C [(AC)' = A' + C']

= AB + A’ + C' + AB' [C’ + AB’C = C’ + AB’]

= A' + B+ C’+ AB’ [A’ + AB = A’ + B]

Re- arranging,

= A' + AB’+ B+ C' [A’ + AB = A’ + B]

36

= A' + B’+ B+ C' [B’+ B= 1]

= A' +1+ C’ [A+ 1= 1]

= 1

7. (x’+ y) (x+ y)

= x’.x+ x’y+ yx+ y.y

= 0+ x’y+ xy+ y

= y (x’+ x+ 1)

[x.x’= 0]; [x. x= x]

= y(1)

= y.

[1+ x = 1]

8. x’yz+ xy’z’+ x’y’z’+ xy’z+ xyz

= yz (x’+x) + xy’z’+ x’y’z’+ xy’z

= yz (1) + y’z’ (x+ x’) + xy’z

[x+ x’=1]

= yz+ y’z’ (1) + xy’z

= yz+ y’z’+ xy’z

= yz+ y’ (z’+ xz)

[x+ x’=1]

= yz+ y’ (z’+ x)

= yz+ y’z’+ xy’

[x’+ xy = x’+ y]

9. [(xy)’+ x’+ xy]’

= [x’+ y’+ x’+ xy]’

= [x’+ y’+ xy]’

[x+ x= x]

= [x’+ y’+ x]’ [x’+ xy = x’+ y]

= [y’+ 1]’ [x+ x’= 1]

= [1]’ [1+ x = 1]

= 0.

10. [xy+ xz]’+ x’y’z

= (xy)’. (xz)’+ x’y’z

= (x’+ y’). (x’+ z’)+ x’y’z

= x’x’+ x’z’+ x’y’+ y’z’+ x’y’z

= x’+ x’z’+ x’y’+ y’z’+ x’y’z

[x+ x= x]

= x’+ x’z’+ x’y’+ y’ [z’+ x’z]
= x’+ x’z’+ x’y’+ y’ [z’+ x’]

[x’+ xy = x’+ y]

= x’+ x’y’+ y’ [z’+ x’] [x+ xy = x]

= x’+ x’y’+ y’z’+ x’y’

= x’+ y’z’+ x’y’

[x+ xy = x]

= x’+ y’z’. [x+ xy = x]

37

2.5 Complement of A Function:

 The complement of a function F is F’ and is obtained from an interchange of 0’s for

1’s and 1’s for 0’s in the value of F. The complement of a function may be derived

algebraically through DeMorgan’s theorem.

 DeMorgan’s theorems for any number of variables resemble in form the two- variable case

and can be derived by successive substitutions similar to the method used in the preceding

derivation. These theorems can be generalized as –

(A+ B+ C+ D+ … + F)’ = A’ B’ C’ D’ … F’

(A B C D … F)’ = A’+B’+ C’+ D’+ … +F’.

Find the complement of the following functions,

1. F= x’yz’+ x’y’z

F’= (x’yz’+ x’y’z)’

= (x”+ y’+ z”) . (x”+ y”+z’)

= (x+ y’+ z). (x+ y+ z’).

2. F= (xy + y’z + xz) x.

F’ = [(xy + y’z + xz) x]’

= (xy + y’z + xz)’ + x’

= [(xy)’ . (y’z)’. (xz)’] + x’

= [(x’+y’). (y+z’). (x’+z’)] + x’

= [(x’y+ x’z’+ 0+ y’z’) (x’+z’)] + x’

= x’x’y+ x’x’z’+ x’y’z’+ x’yz’+ x’z’z’+ y’z’z’+ x’

= x’y+ x’z’+ x’y’z’+ x’yz’+ x’z’+ y’z’+ x’ [x+ x = x], [x. x =x]

= x’y+ x’z’+ x’z’ (y’+ y) + y’z’+ x’ [x+ x’= 1]

= x’y+ x’z’+ x’z’ (1) + y’z’+ x’

= x’y+ x’z’+ y’z’+ x’

= x’y+ x’+ x’z’+ y’z’

= x’(y+1) + x’z+ y’z’ [y+1= 1]

= x’ (1+z) + y’z’ [y+1= 1]

= x’+ y’z’

38

2.6 Logic Gates

2.6.1 Basic Logic Gates:

Logic gates are electronic circuits that can be used to implement the most elementary

logic expressions, also known as Boolean expressions. The logic gate is the most basic building

block of combinational logic.

There are three basic logic gates, namely the OR gate, the AND gate and the NOT gate.

Other logic gates that are derived from these basic gates are the NAND gate, the NOR gate, the

EXCLUSIVE- OR gate and the EXCLUSIVE-NOR gate.

GATE SYMBOL OPERATION TRUTH TABLE

NOT

(7404)

NOT gate (Inversion), produces

an inverted output pulse for a

given input pulse.

AND

(7408)

AND gate performs logical

multiplication. The output is

HIGH only when all the inputs

are HIGH. When any of the

inputs are low, the output is

LOW.

OR

(7432)

OR gate performs logical

addition. It produces a HIGH on

the output when any of the inputs

are HIGH. The output is LOW

only when all inputs are LOW.

NAND

(7400)

It is a universal gate. When any

of the inputs are LOW, the

output will be HIGH. LOW

output occurs only when all

inputs are HIGH.

39

NOR

It is a universal gate. LOW

output occurs when any of its

input is HIGH. When all its

inputs are LOW, the output is

HIGH.

EX- OR

The output is HIGH only when

odd number of inputs is HIGH.

EX- NOR

The output is HIGH only when

even number of inputs is HIGH.

Or when all inputs are zeros.

2.6.2 UNIVERSAL GATES:

 The NAND and NOR gates are known as universal gates, since any logic function can

be implemented using NAND or NOR gates. This is illustrated in the following sections.

• NAND Gate:

The NAND gate can be used to generate the NOT function, the AND function, the OR

function and the NOR function.

NOT function: By connecting all the inputs together and creating a single common input.

AND function: By simply inverting output of the NAND gate. i.e.,

40

OR function: Simply inverting inputs of the AND gate . i.e., By bubble at the input of NAND gate
indicates inverted input

• NOR Gate:

 Similar to NAND gate, the NOR gate is also a universal gate, since it can be used to

generate the NOT, AND, OR and NAND functions.

• NOT function: By connecting all the inputs together and creating a single common input.

https://sites.google.com/site/amtmttl/st2/NAND%20AS%20AND.PNG?attredirects=0

41

• OR function: By Simply inverting output of the NOR gate.i.e,

• AND function: By simply inverting inputs of the NOR gate. i.e., Bubble at the input of NOR

gate indicates inverted input

• NAND Function: By inverting inputs and outputs of the NOR gate

42

Conversion of

AND/OR/NOT

to NAND/NOR:

• Draw AND/OR logic.

• If NAND hardware has been chosen, add bubbles on the output of each AND gate and

bubbles on input side to all OR gates.

• If NOR hardware has been chosen, add bubbles on the output of each OR gate and bubbles

on input side to all AND gates.

• Add or subtract an inverter on each line that received a bubble in step 2.

• Replace bubbled OR by NAND and bubbled AND by NOR.

• Eliminate double inversions.

Implement Boolean expression using NAND gates:

 Original Circuit:

Soln:

NAND Circuit:

43

 2.7 Canonical and Standard Forms:

Minterms and Maxterms:

 A binary variable may appear either in its normal form (x) or in its complement form (x’).

Now either two binary variables x and y combined with an AND operation. Since each variable

may appear in either form, there are four possible combinations:

x’y’, x’y, xy’ and xy Each of these four AND terms is called a ‘minterm’.

 In a similar fashion, when two binary variables x and y combined with an OR operation,

there are four possible combinations: x’+ y’, x’+ y, x+ y’ and x+ y

Each of these four OR terms is called a ‘maxterm’.
The minterms and maxterms of a 3- variable function can be represented as in table below.

Variables Minterms Maxterms

x Y Z mi Mi

0 0 0 x’y’z’ = m0 x+ y+ z= M0

0 0 1 x’y’z = m1 x+ y+ z’= M1

0 1 0 x’yz’ = m2 x+ y’+ z= M2

0 1 1 x’yz = m3 x+ y’+ z’= M3

1 0 0 xy’z’ = m4 x’+ y+ z= M4

1 0 1 xy’z = m5 x’+ y+ z’= M5

1 1 0 xyz’ = m6 x’+ y’+ z= M6

1 1 1 xyz = m7 x’+ y’+ z’= M7

Sum of Minterm: (Sum of Products)

 The logical sum of two or more logical product terms is called sum of products expression.

It is logically an OR operation of AND operated variables such as:

44

Sum of Maxterm: (Product of Sums)

 A product of sums expression is a logical product of two or more logical sum terms. It is

basically an AND operation of OR operated variables such as,

Canonical Sum of product expression:

If each term in SOP form contains all the literals, then the SOP is known as standard (or)

canonical SOP form. Each individual term in standard SOP form is called minterm canonical

form.

F (A, B, C) = AB’C+ ABC+ ABC’

Steps to convert general SOP to standard SOP form:

1) Find the missing literals in each product term if any.

2) AND each product term having missing literals by ORing the literal and its

complement.

3) Expand the term by applying distributive law and reorder the literals in the product

term.

4) Reduce the expression by omitting repeated product terms if any.

Obtain the canonical SOP form of the function:

1) Y(A, B) = A+ B

= A. (B+ B’)+ B (A+ A’)

= AB+ AB’+ AB+ A’B

= AB+ AB’+ A’B.

2) Y (A, B, C) = A+ ABC

= A. (B+ B’). (C+ C’)+ ABC

= (AB+ AB’). (C+ C’)+ ABC

= ABC+ ABC’+ AB’C+ AB’C’+ ABC

= ABC+ ABC’+ AB’C+ AB’C’

= m7+ m6+ m5+ m4

= ∑m (4, 5, 6, 7).

3) Y (A, B, C) = A+ BC

= A. (B+ B’). (C+ C’)+(A+ A’). BC

45

= (AB+ AB’). (C+ C’)+ ABC+ A’BC

= ABC+ ABC’+ AB’C+ AB’C’+ ABC+ A’BC

= ABC+ ABC’+ AB’C+ AB’C’+ A’BC

= m7+ m6+ m5+ m4+ m3

= ∑m (3, 4, 5, 6, 7).

4) Y (A, B, C) = AC+ AB+ BC

= AC (B+ B’)+ AB (C+ C’)+ BC (A+ A’)

= ABC+ AB’C+ ABC+ ABC’+ ABC+ A’BC

= ABC+ AB’C+ ABC’+ A’BC

= ∑m (3, 5, 6, 7).

5) Y (A, B, C, D) = AB+ ACD

= AB (C+ C’) (D+ D’) + ACD (B+ B’)

= (ABC+ ABC’) (D+ D’) + ABCD+ AB’CD

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ ABCD+ AB’CD

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ AB’CD.

Canonical Product of sum expression:

 If each term in POS form contains all literals then the POS is known as standard (or)

Canonical POS form. Each individual term in standard POS form is called Maxterm canonical

form.

• F (A, B, C) = (A+ B+ C). (A+ B’+ C). (A+ B+ C’)

• F (x, y, z) = (x+ y’+ z’). (x’+ y+ z). (x+ y+ z)

Steps to convert general POS to standard POS form:

1) Find the missing literals in each sum term if any.

2) OR each sum term having missing literals by ANDing the literal andits complement.

3) Expand the term by applying distributive law and reorder the literals in the sum term.

4) Reduce the expression by omitting repeated sum terms if any.

Obtain the canonical POS expression of the functions:

1. Y= A+ B’C

= (A+ B’) (A+ C) [A+ BC = (A+B) (A+C)]

= (A+ B’+ C.C’) (A+ C+ B.B’)

= (A+ B’+C) (A+ B’+C’) (A+ B+ C) (A+ B’+ C)

= (A+ B’+C). (A+ B’+C’). (A+ B+ C)

= M2. M3. M0

= ∏M (0, 2, 3)

46

2. Y= (A+B) (B+C) (A+C)

= (A+B+ C.C’) (B+ C+ A.A’) (A+C+B.B’)

= (A+B+C) (A+B+C’) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C)

= (A+B+C) (A+B+C’) (A’+B+C) (A+B’+C)

= M0. M1. M4. M2

= ∏M (0, 1, 2, 4)

3. Y= A. (B+ C+ A)

= (A+ B.B’+ C.C’). (A+ B+ C)

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’) (A+B+C)

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’)

= M0. M1. M2. M3

= ∏M (0, 1, 2, 3)

4. Y= (A+B’) (B+C) (A+C’)

= (A+B’+C.C’) (B+C+ A.A’) (A+C’+ B.B’)

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’) (A+B’+C’)

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’)

= M2. M3. M0. M4. M1

= ∏M (0, 1, 2, 3, 4)

47

CHAPTER 3

KARNAUGH MAP MINIMIZATION

 The simplification of the functions using Boolean laws and theorems becomes complex

with the increase in the number of variables and terms. The map method, first proposed by

Veitch and slightly improvised by Karnaugh, provides a simple, straightforward procedure for

the simplification of Boolean functions. The method is called Veitch diagram or Karnaugh

map, which may be regarded as a pictorial representation of a truth table.

 The Karnaugh map technique provides a systematic method for simplifying and

manipulation of Boolean expressions. A K-map is a diagram made up of squares, with

each square representing one minterm of the function that is to be minimized. For n variables

on a Karnaugh map there are 2n numbers of squares. Each square or cell represents one of

the minterms. It can be drawn directly from either minterm (sum-of- products) or maxterm

(product-of-sums) Boolean expressions.

3.1 Two- Variable, Three Variable and Four Variable Maps

 Karnaugh maps can be used for expressions with two, three, four and five variables.

The number of cells in a Karnaugh map is equal to the total number of possible input variable

combinations as is the number of rows in a truth table. For three variables, the number of cells

is 23 = 8. For four variables, the number of cells is 24 = 16.

48

 Product terms are assigned to the cells of a K-map by labeling each row and each column

of a map with a variable, with its complement or with a combination of variables &

complements. The below figure shows the way to label the rows & columns of a 1, 2, 3 and 4-

variable maps and the product terms corresponding to each cell.

 It is important to note that when we move from one cell to the next along any row or from

one cell to the next along any column, one and only one variable in the product term changes

(to a complement or to an uncomplemented form). Irrespective of number of variables the

labels along each row and column must conform to a single change. Hence gray code is used

to label the rows and columns of K-map as show now.

49

3.2 Grouping cells for Simplification:

 The grouping is nothing but combining terms in adjacent cells. The simplification is

achieved by grouping adjacent 1’s or 0’s in groups of 2i, where i = 1, 2, …, n and n is the

number of variables. When adjacent 1’s are grouped then we get result in the sum of product

form; otherwise we get result in the product of sum form.

Grouping Two Adjacent 1’s: (Pair)

In a Karnaugh map we can group two adjacent 1’s. The resultant group is called

Pair.

50

Examples of Pairs

Grouping Four Adjacent 1’s: (Quad)

 In a Karnaugh map we can group four adjacent 1’s. The resultant group is called Quad. Fig
(a) shows the four 1’s are horizontally adjacent and Fig (b) shows they are vertically adjacent. Fig
(c) contains four 1’s in a square, and they are considered adjacent to each other.

Examples of Quads

The four 1’s in fig (d) and fig (e) are also adjacent, as are those in fig (f) because, the top

and bottom rows are considered to be adjacent to each other and the leftmost and rightmost

columns are also adjacent to each other.

Grouping Eight Adjacent 1’s: (Octet)

In

a Karnaugh map we can group eight adjacent 1’s. The resultant group is called Octet.

51

Simplification of Sum of Products Expressions: (Minimal Sums)

The generalized procedure to simplify Boolean expressions as follows:

1) Plot the K-map and place 1’s in those cells corresponding to the 1’s in the sum of

product expression. Place 0’s in the other cells.

2) Check the K-map for adjacent 1’s and encircle those 1’s which are not adjacent to any

other 1’s. These are called isolated 1’s.

3) Check for those 1’s which are adjacent to only one other 1 and encircle such

 pairs.

4)Check for quads and octets of adjacent 1’s even if it contains some 1’s that have already been
encircled. While doing this make sure that there are minimum number of groups.

4) Combine any pairs necessary to include any 1’s that have not yet been grouped.

5) Form the simplified expression by summing product terms of all the groups.

Three- Variable Map:

1. Simplify the Boolean expression,

F(x, y, z) = ∑m (3, 4, 6, 7).

Soln:

F = yz+ xz’

2. F(x, y, z) = ∑m (0, 2, 4, 5, 6).

F = z’+ xy’

3. F = A’C + A’B + AB’C + BC

Soln:

= A’C (B+ B’) + A’B (C+ C’) + AB’C + BC (A+ A’)

= A’BC+ A’B’C + A’BC + A’BC’ + AB’C + ABC + A’BC

= A’BC+ A’B’C + A’BC’ + AB’C + ABC

52

= m3+ m1+ m2+ m5+ m7

= ∑ m (1, 2, 3, 5, 7)

F = C + A’B

4. AB’C + A’B’C + A’BC + AB’C’ + A’B’C’

Soln:

= m5 + m1 + m3 + m4 + m0

= ∑ m (0, 1, 3, 4, 5)

F = A’C + B’

Four - Variable Map:

1. Simplify the Boolean expression,

Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’

Soln:

Therefore, Y= A’B’CD’+ AC’D+ BC’

53

2. F (w, x, y, z) = ∑ m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Soln:

Therefore,

F= y’+ w’z’+ xz’

3. F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’

= A’B’C’ (D+ D’) + B’CD’ (A+ A’) + A’BCD’+ AB’C’ (D+ D’)

= A’B’C’D+ A’B’C’D’+ AB’CD’+ A’B’CD’+ A’BCD’+ AB’C’D+ AB’C’D’

= m1+ m0+ m10+ m2+ m6+ m9+ m8

= ∑ m (0, 1, 2, 6, 8, 9, 10)

Therefore,

F= B’D’+ B’C’+ A’CD’.

4. Y= ABCD+ AB’C’D’+ AB’C+ AB

= ABCD+ AB’C’D’+ AB’C (D+D’)+ AB (C+C’) (D+D’)

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ (ABC+ ABC’) (D+ D’)

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD+ ABCD’+ ABC’D+ ABC’D’

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD’+ ABC’D+ ABC’D’

= m15+ m8+ m11+ m10+ m14+ m13+ m12

= ∑ m (8, 10, 11, 12, 13, 14, 15)

54

Therefore,

Y= AB+ AC+ AD’.

5. Y (A, B, C, D)= ∑ m (7, 9, 10, 11, 12, 13, 14, 15)

Therefore, Y= AB+ AC+ AD+BCD.

6. Y= A’B’C’D+ A’BC’D+ A’BCD+ A’BCD’+ ABC’D+ ABCD+ AB’CD

= m1+ m5+ m7+ m6+ m13+ m15+ m11

= ∑ m (1, 5, 6, 7, 11, 13, 15)

In the above K-map, the cells 5, 7, 13 and 15 can be grouped to form a quad as indicated

by the dotted lines. In order to group the remaining 1’s, four pairs have to be formed. However,

all the four 1’s covered by the quad are also covered by the pairs. So, the quad in the above k-

map is redundant.

Therefore, the simplified expression will be,

Y = A’C’D+ A’BC+ ABD+ ACD.

55

7. Y= ∑ m (1, 5, 10, 11, 12, 13, 15)

Therefore, Y= A’C’D+ ABC’+ ACD+ AB’C.

8.F (A, B, C, D) = ∑ m (0, 1, 4, 8, 9, 10)

9.

Therefore, F= A’C’D’+ AB’D’+ B’C’.

Simplification of Sum of Products Expressions: (Minimal Sums)

1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C)

= M1. M3. M7. M4. M0

=∏ M (0, 1, 3, 4, 7)

= ∑ m (2, 5, 6)

Y’ = B’C’+ A’C+ BC.

Y= Y” = (B’C’+ A’C+ BC)’

= (B’C’)’. (A’C)’. (BC)’

= (B”+ C”). (A”+C’). (B’+ C’)

Y = (B+ C). (A+C’). (B’+ C’)

56

2. Y= (A’+ B’+ C+ D) (A’+ B’+ C’+ D) (A’+ B’+ C’+ D’) (A’+ B+ C+ D) (A+ B’+ C’+ D)

(A+ B’+ C’+ D’) (A+ B+ C+ D) (A’+ B’+ C+ D’)

= M12. M14. M15. M8. M6. M7. M0. M13

= ∏M (0, 6, 7, 8, 12, 13, 14, 15)

Y’ = B’C’D’+ AB+ BC

Y= Y” = (B’C’D’+ AB+ BC)’

= (B’C’D’)’. (AB)’. (BC)’

= (B”+ C”+D”). (A’+B’). (B’+ C’)

= (B+ C+ D). (A’+ B’). (B’+ C’)

Therefore, Y= (B+ C+ D). (A’+ B’). (B’+ C’)

3. F(A, B, C, D)= ∏M (0, 2, 3, 8, 9, 12, 13, 14, 15)

Y’ = A’B’D’+ A’B’C+ ABD+ AC’

Y= Y” = (A’B’D’+ A’B’C+ ABD+ AC’)’

= (A’B’D’)’. (A’B’C)’. (ABD)’. (AC’)’

= (A”+ B”+ D”). (A”+ B”+C’). (A’+ B’+ D’). (A’+ C”)

= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

Therefore, Y= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C)

57

4. F(A, B, C, D)= ∑m (0, 1, 2, 5, 8, 9, 10)

= ∏M (3, 4, 6, 7, 11, 12, 13, 14, 15)

Y’ = BD’+ CD+ AB

Y= Y” = (BD’+ CD+ AB)’

= (BD’)’. (CD)’. (AB)’ = (B’+ D”). (C’+ D’). (A’+ B’)

= (B’+ D). (C’+ D’). (A’+ B’)

Therefore, Y= (B’+ D). (C’+ D’). (A’+ B’)

3.3 Don’t care Conditions:

 A don’t care minterm is a combination of variables whose logical value is not specified.

When choosing adjacent squares to simplify the function in a map, the don’t care minterms

may be assumed to be either 0 or 1. When simplifying the function, we can choose to include

each don’t care minterm with either the 1’s or the 0’s, depending on which combination gives

the simplest expression.

1. F (x, y, z) = ∑m (0, 1, 2, 4, 5)+ ∑d (3, 6, 7)

F (x, y, z) = 1

2. F (w, x, y, z) = ∑m (1, 3, 7, 11, 15)+ ∑d (0, 2, 5)

58

F (w, x, y, z) = w’x’+ yz

3. F (w, x, y, z) = ∑m (0, 7, 8, 9, 10, 12)+ ∑d (2, 5, 13)

F (w, x, y, z) = w’xz+ wy’+ x’z’.

4. F (w, x, y, z) = ∑m (0, 1, 4, 8, 9, 10)+ ∑d (2, 11)

Soln:

F (w, x, y, z) = wx’+ x’y’+ w’y’z’.

59

5. F(A, B, C, D) = ∑m (0, 6, 8, 13, 14)+ ∑d (2, 4, 10)

Soln:

F(A, B, C, D) = CD’+ B’D’+ A’B’C’D’.

3.4 Five- Variable Maps:

A 5- variable K- map requires 25= 32 cells, but adjacent cells are difficult to identify on

a single 32-cell map. Therefore, two 16 cell K-maps are used.

If the variables are A, B, C, D and E, two identical 16- cell maps containing B, C, D and E

can be constructed. One map is used for A and other for A’.

Five- Variable Karnaugh map (Layer Structure)

 In order to identify the adjacent grouping in the 5- variable map, we must imagine the two

maps superimposed on one another ie., every cell in one map is adjacent to the corresponding

cell in the other map, because only one variable changes between such corresponding cells.Thus,

every row on one map is adjacent to the corresponding row (the one occupying the same position)

on the other map, as are corresponding columns. Also,

60

the rightmost and leftmost columns within each 16- cell map are adjacent, just as they are in

any 16- cell map, as are the top and bottom rows.

Typical sub cubes on a five-variable map

 However, the rightmost column of the map is not adjacent to the leftmost column of the

other map.

1. Simplify the Boolean function

F (A, B, C, D, E) = ∑m (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)

Soln:

F (A, B, C, D, E) = A’B’E’+ BE+ AD’E

2. F (A, B, C, D, E) = ∑m (0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)

Soln:

61

F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’

3. F (A, B, C, D, E) = ∑m (1, 4, 8, 10, 11, 20, 22, 24, 25, 26)+∑d (0, 12, 16, 17)

F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’

4. F (A, B, C, D, E) = ∑m (0, 1, 2, 6, 7, 9, 12, 28, 29, 31)

Soln:

F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD

62

5. F (x1, x2, x3, x4, x5) = ∑m (2, 3, 6, 7, 11, 12, 13, 14, 15, 23, 28, 29, 30, 31)

Soln:

F (x1, x2, x3, x4, x5) = x2x3+ x3x4x5+ x1’x2’x4+ x1’x3’x4x5

6. F (x1, x2, x3, x4, x5) = ∑m (1, 2, 3, 6, 8, 9, 14, 17, 24, 25, 26, 27, 30, 31)+ ∑d (4, 5)

Soln:

F (x1, x2, x3, x4, x5) = x2x3’x4’+ x2x3x4x5’+ x3’x4’x5+ x1x2x4+ x1’x2’x3x5’+ x1’x2’x3’x4

 3.5 Two Level Gate Network

• The SOP can be implemented using NAND – NAND logic

1. Each product term is connected to NAND gates in level 1
2. One NAND is connected in the second level 2

• The POS can be implemented using NOR – NOR logic

1. Each sum term is connected to NOR gates in level 1
2. One NOR is connected in the second level 2

63

Implement Using NAND – NAND logic

F=A.B+C.D+E

 F=(A+B)(C+D’)E

64

Implement Using NOR – NOR logic

 F=(A+B)(C+D’)E

 F=(x+y’)(y+z)(x’+y+z’)

65

CHAPTER 4

COMBINATIONAL CIRCUITS

4.1 Introduction

The digital system consists of two types of circuits, namely

• Combinational circuits

• Sequential circuits

Combinational circuit

 consists of logic gates whose output at any time is determined from the present

combination of inputs. The logic gate is the most basic building block of combinational logic.

The logical function performed by a combinational circuit is fully defined by a set of Boolean

expressions.

Sequential logic circuit

 comprises both logic gates and the state of storage elements such as flip-flops. As a

consequence, the output of a sequential circuit depends not only on present value of inputs but

also on the past state of inputs.

In the previous chapter, we have discussed binary numbers, codes, Boolean algebra and

simplification of Boolean function and logic gates. In this chapter, formulation and analysis

of various systematic designs of combinational circuits will be discussed.

 A combinational circuit consists of input variables, logic gates, and output variables.

The logic gates accept signals from inputs and output signals are generated according to the

logic circuits employed in it. Binary information from the given data transforms to desired

output data in this process. Both input and output are obviously the binary signals, i.e.,

both the input and output signals are of two possible states, logic 1 and logic 0.

Block diagram of a combinational logic circuit

For n number of input variables to a combinational circuit, 2n possible combinations of binary

input states are possible. For each possible combination, there is one and only one possible

output combination. A combinational logic circuit can be described by m Boolean functions

and each output can be expressed in terms of n input variables.

66

4.2 Design Procedure:

• The problem is stated.

• Identify the input and output variables.

• The input and output variables are assigned letter symbols.

• Construction of a truth table to meet input -output requirements.

• Writing Boolean expressions for various output variables in terms of input

variables.

• The simplified Boolean expression is obtained by any method of minimization—

algebraic method, Karnaugh map method, or tabulation method.

• A logic diagram is realized from the simplified boolean expression usinglogic

gates.

The following guidelines should be followed while choosing the preferred form for hardware

implementation:

• The implementation should have the minimum number of gates, with the gates used

having the minimum number of inputs.

• There should be a minimum number of interconnections.

• Limitation on the driving capability of the gates should not be ignored.

4.3 Arithmetic Circuits – Basic Building Blocks:

 In this section, we will discuss those combinational logic building blocks that can be used

to perform addition and subtraction operations on binary numbers. Addition and subtraction

are the two most commonly used arithmetic operations, as the other two, namely multiplication

and division, are respectively the processes of repeated addition and repeated subtraction.The

basic building blocks that form the basis of all hardware used to perform the arithmetic

operations on binary numbers are half-adder, full adder, half-subtractor, full- subtractor.

4.3.1 Half-Adder:

 A half-adder is a combinational circuit that can be used to add two binary bits. It has two

inputs that represent the two bits to be added and two outputs, with one producing the SUM

output and the other producing the CARRY.

Block schematic of half-adder

 The truth table of a half-adder, showing all possible input combinations and the corresponding

outputs are shown below.

67

Truth table of half-adder

Inputs Outputs

A B Carry (C) Sum (S)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

K-map simplification for carry and sum:

 The Boolean expressions for the SUM and CARRY outputs are given by the equations,

Sum, S = A’B+ AB’

Carry, C = A . B

The first one representing the SUM output is that of an EX-OR gate, the second one

representing the CARRY output is that of an AND gate.

The logic diagram of the half adder is,

Logic Implementation of Half-adder

4.3.2 Full-Adder:

 A full adder is a combinational circuit that forms the arithmetic sum of three input

bits. It consists of 3 inputs and 2 outputs. Two of the input variables, represent the

significant bits to be added. The third input represents the carry from previous lower

significant position. The block diagram of full adder is given by,

68

Block schematic of full-adder

 The full adder circuit overcomes the limitation of the half-adder, which can be used to add

two bits only. As there are three input variables, eight different input combinations are possible.

The truth table is shown below,

Truth Table

Inputs Outputs

A B Cin Sum (S) Carry (Cout)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

To derive the simplified Boolean expression from the truth table, the Karnaugh map method

is adopted as,

The Boolean expressions for the SUM and CARRY outputs are given by the equations,

Sum, S = A’B’Cin+ A’BC’in + AB’C’in +ABCin

Carry, Cout = AB+ ACin + BCin.

69

The logic diagram for the above functions is shown as,

Implementation of full-adder in Sum of Product

The logic diagram of the full adder can also be implemented with two half- adders and one

OR gate. The S output from the second half adder is the exclusive-OR of Cin and the output

of the first half-adder, giving

 = C‘in (A‘B+AB‘) + Cin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]

 = C‘in (A‘B+AB‘) + Cin (AB+A‘B‘)

 = A‘BC‘in + AB‘C‘in + ABCin + A‘B‘Cin .

and the carry output is,

Carry, Cout = AB+ Cin (A’B+AB’)

= AB+ A‘BCin+ AB‘Cin

= AB (Cin+1) + A‘BCin+ AB‘Cin [Cin+1= 1]
= ABCin+ AB+ A‘BCin+ AB‘Cin

= AB+ ACin (B+B‘) + A‘BCin

= AB+ ACin+ A‘BCin

= AB (Cin+1) + ACin+ A‘BCin [Cin+1= 1]

= ABCin+ AB+ ACin+ A‘BCin

= AB+ ACin+ BCin (A +A‘)

= AB+ ACin+ BCin.

Implementation of full adder with two half-adders and an OR gate

70

4.3.3 Half -Subtractor:

Block schematic of half-subtractor

 A half-subtractor is a combinational circuit that can be used to subtract one binary digit

from another to produce a DIFFERENCE output and a BORROW output. The BORROW

output here specifies whether a ‗1‘ has been borrowed to perform the subtraction.

The truth table of half-subtractor, showing all possible input combinations and the corresponding

outputs are shown below.

Input Output

A B Difference (D) Borrow (Bout)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

K-map simplification for half subtractor:

 The Boolean expressions for the DIFFERENCE and BORROW outputs are given by the

equations,

Difference, D = A’B+ AB’

Borrow, Bout = A’ . B

 The first one representing the DIFFERENCE (D)output is that of an exclusive-OR gate,

the expression for the BORROW output (Bout) is that of an AND gate with input A

complemented before it is fed to the gate. The logic diagram of the half adder is,

71

Logic Implementation of Half-Subtractor

 Comparing a half-subtractor with a half-adder, we find that the expressions for the SUM

and DIFFERENCE outputs are just the same. The expression for BORROW in the case of the

half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If the

input A, ie., the minuend is complemented, an AND gate can be used to implement the

BORROW output.

4.3.4 Full Subtractor:

 A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend,

and also takes into consideration whether a ‗1‘ has already been borrowed by the previous

adjacent lower minuend bit or not.

 As a result, there are three bits to be handled at the input of a full subtractor, namely the

two bits to be subtracted and a borrow bit designated as Bin. There are two outputs, namely the

DIFFERENCE output D and the BORROW output Bo. The BORROW output bit tells whether

the minuend bit needs to borrow a ‗1‘ from the next possible higher minuend bit.

Block schematic of full-adder

72

The truth table for full-subtractor is,

Inputs Outputs

A B Bi

n

Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

K-map simplification for full-subtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs are given by the

equations,

Difference, D = A’B’Bin+ A’BB’in + AB’B’in + ABBin

Borrow, Bout = A’B+ A’Cin +BBin.

The logic diagram for the above functions is shown as,

73

Implementation of full-Subtractor using Half Subtractors

 The logic diagram of the full-subtractor can also be implemented with two half-

subtractors and one OR gate. The difference, D output from the second half subtractor is the

Ex -OR of Bin and the output of the first half-subtractor, giving

= B‘in (A‘B+AB‘) + Bin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)]

= B‘in (A‘B+AB‘) + Bin (AB+A‘B‘)

= A‘BB‘in + AB‘B‘in + ABBin + A‘B‘Bin .

and the borrow output is,
Borrow, Bout = A’B+ Bin (A’B+AB’)’ [(x‘y+xy‘)‘= (xy+x‘y‘)]

= A‘B+ Bin (AB+A‘B‘)

= A‘B+ ABBin+ A‘B‘Bin

= A‘B (Bin+1) + ABBin+ A‘B‘Bin [Cin+1= 1]

= A‘BBin+ A‘B+ ABBin+ A‘B‘Bin

= A‘B+ BBin (A+A‘) + A‘B‘Bin [A+A‘= 1]

= A‘B+ BBin+ A‘B‘Bin

= A‘B (Bin+1) +BBin+ A‘B‘Bin [Cin+1= 1]

= A‘BBin+ A‘B+ BBin+ A‘B‘Bin

= A‘B+ BBin+ A‘Bin (B +B‘)

= A‘B+ BBin+ A‘Bin.

Therefore,

we can implement full-subtractor using two half-subtractors and OR gate as,

Implementation of full-subtractor with two half-subtractors and an OR gate

74

4.4 Binary Adder (Parallel Adder):

Fig. 4-bit binary parallel Adder

The 4-bit binary adder using full adder circuits is capable of adding two 4-bit numbers

resulting in a 4-bit sum and a carry output as shown in figure below. Since all the bits of augend

and addend are fed into the adder circuits simultaneously and the additions in each position are

taking place at the same time, this circuit is known as parallel adder.

Let the 4-bit words to be added be represented by, A3A2A1A0= 1111 and B3B2B1B0= 0011.

 The bits are added with full adders, starting from the least significant position, to form

the sum it and carry bit. The input carry C0 in the least significant position must be

 The carry output of the lower order stage is connected to the carry input of the next

higher order stage. Hence this type of adder is called ripple-carry adder.

 In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum S0

and carry C1. This carry C1 becomes the carry input to the second stage. Similarly in the second

stage, A1, B1 and C1 are added resulting in sum S1 and carry C2, in the third stage, A2, B2

and C2 are added resulting in sum S2 and carry C3, in the third stage, A3, B3 and C3 are added

resulting in sum S3 and C4, which is the output carry. Thus the circuit results in a sum

(S3S2S1S0) and a carry output (Cout).Though the parallel binary adder is said to generate its

output immediately after the inputs are applied, its speed of operation is limited by the carry

propagation delay through all stages. However, there are several methods to reduce this delay.

One of the methods of speeding up this process is look-ahead carry addition which eliminates

the ripple-carry delay.

75

4.5 Carry Propagation–Look-Ahead Carry Generator:

 In Parallel adder, all the bits of the augend and the addend are available for computation at

the same time. The carry output of each full-adder stage is connected to the carry input of the

next high-order stage. Since each bit of the sum output depends on the value of the input carry,

time delay occurs in the addition process. This time delay is called as carry propagation

delay.For example, addition of two numbers (0011+ 0101) gives the result as 1000. Addition

of the LSB position produces a carry into the second position. This carry when added to the bits

of the second position, produces a carry into the third position. This carry when added to bits

of the third position, produces a carry into the last position. The sum bit generated in the

last position (MSB) depends on the carry that was generated by the addition in the previous

position. i.e., the adder will not produce correct result until LSB carry has propagated through

the intermediate full-adders. This represents a time delay that depends on the propagation delay

produced in an each full-adder. For example, if each full adder is considered to have a

propagation delay of 30nsec, then S3 will not react its correct value until 90 nsec after LSB is

generated. Therefore total time required to perform addition is 90+ 30 = 120nsec.

4-bit Parallel Adder

Full-Adder circuit

 The method of speeding up this process by eliminating inter stage carry delay is called

look ahead-carry addition. This method utilizes logic gates to look at the lower order bits of the

augend and addend to see if a higher-order carry is to be generated. It uses two functions: carry

generate and carry propagate.

Consider the circuit of the full-adder shown above. Here we define two functions:

carry generate (Gi) and carry propagate (Pi) as,

76

the output sum and carry can be expressed as,

Gi (carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of the input

carry Ci. Pi (carry propagate) because it is the term associated with the propagation of the

carry from Ci to Ci+1.

The Boolean functions for the carry outputs of each stage and substitute for each Ci its value

from the previous equation:

C0= input

carry C1= G0 + P0C0

C2= G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0

C3= G2 + P2C2 = G2 + P2 (G1 + P1G0 + P1P0C0) = G2 + P2G1 + P2P1G0 + P2P1P0C0

Fig. Logic diagram of Carry Look-ahead Generator

Since the Boolean function for each output carry is expressed in sum of products, each function

can be implemented with one level of AND gates followed by an OR gate. The three Boolean

functions for C1, C2 and C3 are implemented in the carry look-ahead generator as shown below.

77

 Note that C3 does not have to wait for C2 and C1 to propagate; in fact C3 is propagated at

the same time as C1 and C2.Using a Look-ahead Generator we can easily construct a 4-bit

parallel adder with a Look- ahead carry scheme. Each sum output requires two exclusive-OR

gates. The output of the first exclusive-OR gate generates the Pi variable, and the AND gate

generates the Gi variable. The carries are propagated through the carry look-ahead generator

and applied as inputs to the second exclusive-OR gate. All output carries are generated after a

delay through two levels of gates. Thus, outputs S1 through S3 have equal propagation delay

times.

Fig. 4-Bit Adder with Carry Look-ahead

4.6 Binary Subtractor (Parallel Subtractor):

 The subtraction of unsigned binary numbers can be done most conveniently by means of

complements. The subtraction A-B can be done by taking the 2‘s complement of B and

adding it to A. The 2‘s complement can be obtained by taking the 1‘s complement and adding

78

1 to the least significant pair of bits. The 1‘s complement can be implemented with inverters

and a 1 can be added to the sum through the input carry.

 The circuit for subtracting A-B consists of an adder with inverters placed between each

data input B and the corresponding input of the full adder. The input carry C0 must be equal

to 1 when performing subtraction. The operation thus performed becomes A, plus the 1‘s

complement of B, plus1. This is equal to A plus the 2‘s complement of B.

Fig. 4-bit Parallel Subtractor

4.7 Parallel Adder/ Subtractor:

Fig. 4-Bit Adder Subtractor

 The addition and subtraction operation can be combined into one circuit with one common

binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit

adder Subtractor circuit is shown below. The mode input M controls the operation. When M=

0, the circuit is an adder and when M=1, the circuit becomes a Subtractor. Each exclusive-OR

gate receives input M and one of the inputs of B. When M=0, we have B Ex-OR 0 = B. The

full adders receive the value of B, the input carry is 0, and the circuit performs A plus B. When

M=1, we have B Ex –OR 1= B‘

79

and C0=1. The B inputs are all complemented and a 1 is added through the input carry. The

circuit performs the operation A plus the 2‘s complement of B. The exclusive-OR with output

V is for detecting an overflow.

4.8 Decimal Adder (BCD Adder):

 The digital system handles the decimal number in the form of binary coded decimal

numbers (BCD). A BCD adder is a circuit that adds two BCD bits and produces a sum digit also in

BCD.

 Consider the arithmetic addition of two decimal digits in BCD, together with an input carry

from a previous stage. Since each input digit does not exceed 9, the output sum cannot be

greater than 9+ 9+1 = 19; the 1 is the sum being an input carry. The adder will form the sum in

binary and produce a result that ranges from 0 through 19.

 These binary numbers are labeled by symbols K, Z8, Z4, Z2, Z1, K is the carry. The columns

under the binary sum list the binary values that appear in the outputs of the 4- bit binary adder.

The output sum of the two decimal digits must be represented in BCD.

Binary Sum BCD Sum

Decimal
K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

80

 In examining the contents of the table, it is apparent that when the binary sum is equal to

or less than 1001, the corresponding BCD number is identical, and therefore no conversion is

needed. When the binary sum is greater than 9 (1001), we obtain a non- valid BCD

representation. The addition of binary 6 (0110) to the binary sum converts it to the correct BCD

representation and also produces an output carry as required.

 The logic circuit to detect sum greater than 9 can be determined by simplifying the boolean

expression of the given truth table.

To implement BCD adder we require:

• 4-bit binary adder for initial addition

• Logic circuit to detect sum greater than 9 and

• One more 4-bit adder to add 01102 in the sum if the sum is greater than 9 or carry is

81

Fig. Logic diagram of BCD adder

 The two decimal digits, together with the input carry, are first added in the top4- bit binary

adder to provide the binary sum. When the output carry is equal to zero, nothing is added to the

binary sum. When it is equal to one, binary 0110 is added to the binary sum through the bottom

4-bit adder. The output carry generated from the bottom adder can be ignored, since it supplies

information already available at the output carry terminal. The output carry from one stage

must be connected to the input carry of the next higher-order stage.

4.9 Magnitude Comparator:

 A magnitude comparator is a combinational circuit that compares two given numbers (A

and B) and determines whether one is equal to, less than or greater than the other. The output
is in the form of three binary variables representing the conditions A= B, A>B and A<B, if A

and B are the two numbers being compared.

Fig. Block diagram of magnitude comparator

 For comparison of two n-bit numbers, the classical method to achieve the Boolean

expressions requires a truth table of 22n entries and becomes too lengthy and cumbersome.

82

2 bit Magnitude Comparator:

The truth table of 2-bit comparator is given in table below— Truth table:

Inputs Outputs

A3 A2 A1 A0 A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

K-map Simplification:

83

Logic Diagram:

84

4.10 Decoder:

General structure of decoder

A decoder is a combinational circuit that converts binary information from ‗n‘ input

lines to a maximum of ‗2n‘ unique output lines. The encoded information is presented as ‗n‘

inputs producing ‗2n‘ possible outputs. The 2n output values are from 0 through 2n-1. A

decoder is provided with enable inputs to activate decoded output based on data inputs. When

any one enable input is unasserted, all outputs of decoder are disabled.

Binary Decoder (2 to 4 decoder):

 A binary decoder has ‗n‘ bit binary input and a one activated output out of 2n outputs. A

binary decoder is used when it is necessary to activate exactly one of 2n outputs based on an

n-bit input value.

85

2-to-4 Line decoder

 Here the 2 inputs are decoded into 4 outputs, each output representing one of the minterms

of the two input variables.

Inputs Outputs

Enable A B Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

 As shown in the truth table, if enable input is 1 (EN= 1) only one of the outputs (Y0 –

Y3), is active for a given input. The output Y0 is active, ie., Y0= 1 when inputs A= B= 0, Y1

is active when inputs, A= 0 and B= 1, Y2 is active, when input A= 1 and B= 0, Y3 is active,

when inputs A= B= 1.

3 to-8 Line Decoder:

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7). Based on

the 3 inputs one of the eight outputs is selected.

The three inputs are decoded into eight outputs, each output representing one of the

minterms of the 3-input variables. This decoder is used for binary-to-octal conversion. The

input variables may represent a binary number and the outputs will represent the eight digits in

the octal number system. The output variables are mutually exclusive because only one output

can be equal to 1 at any one time. The output line whose value is equal to 1 represents the

minterm equivalent of the binary number presently available in the input lines.

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

86

3-to-8 line decoder

Applications of decoders:

• Decoders are used in counter system.

• They are used in analog to digital converter.

• Decoder outputs can be used to drive a display system.

4.11 Encoders:

 An encoder is a digital circuit that performs the inverse operation of a decoder. Hence, the

opposite of the decoding process is called encoding. An encoder is a combinational circuit that

converts binary information from 2n input lines to a maximum of ‗n‘ unique output lines.

87

General structure of Encoder

 It has 2n input lines, only one which 1 is active at any time and ‗n‘ output lines. It encodes

one of the active inputs to a coded binary output with ‗n‘ bits. In an encoder, the number of

outputs is less than the number of inputs.

Octal-to-Binary Encoder:

 It has eight inputs (one for each of the octal digits) and the three outputs that generate the

corresponding binary number. It is assumed that only one input has a value of 1 at any given

time.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

 The encoder can be implemented with OR gates whose inputs are determined directly from

the truth table. Output z is equal to 1, when the input octal digit is 1 or 3 or 5 or 7. Output y

is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5, 6 or 7. These conditions can

be expressed by the following output Boolean functions:

z= D1+ D3+ D5+ D7

y= D2+ D3+ D6+ D7 x= D4+ D5+ D6+ D7

 The encoder can be implemented with three OR gates. The encoder defined in the below

table, has the limitation that only one input can be active at any given time. If two inputs are

active simultaneously, the output produces an undefined combination.

 For eg., if D3 and D6 are 1 simultaneously, the output of the encoder may be 111. This

does not represent either D6 or D3. To resolve this problem, encoder circuits must establish

an input priority to ensure that only one input is encoded. If we establish a higher priority for

inputs with higher subscript numbers and if D3 and D6 are 1 at the same time, the output will

be 110 because D6 has higher priority than D3.

88

Octal-to-Binary Encoder

 Another problem in the octal-to-binary encoder is that an output with all 0‘s is

generated when all the inputs are 0; this output is same as when D0 is equal to 1. The

discrepancy can be resolved by providing one more output to indicate that atleast one input is

equal to 1.

Priority Encoder:

 A priority encoder is an encoder circuit that includes the priority function. In priority

encoder, if two or more inputs are equal to 1 at the same time, the input having the highest

priority will take precedence.

 In addition to the two outputs x and y, the circuit has a third output, V (valid bit indicator).

It is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there is no valid input

and V is equal to 0.

 The higher the subscript number, higher the priority of the input. Input D3, has the highest

priority. So, regardless of the values of the other inputs, when D3 is 1, the output for xy is 11.D2

has the next priority level. The output is 10, if D2= 1 provided D3= 0. The output for D1 is

generated only if higher priority inputs are 0, and so on down the priority levels.

Truth table

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

 Although the above table has only five rows, when each don‘t care condition is replaced first

by 0 and then by 1, we obtain all 16 possible input combinations. For example, the third row in

the table with X100 represents minterms 0100 and 1100. The don‘t care condition is replaced

by 0 and 1 as shown in the table below.

89

Modified Truth table

Inputs Outputs

D0 D1 D2 D3 X Y V

0 0 0 0 X x 0

1 0 0 0 0 0 1

0 1 0 0
0 1 1

1 1 0 0

0 0 1 0

0
1

1
0

1
1

0
0

1 0 1

1 1 1 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

K-map Simplification:

90

The priority encoder is implemented according to the above Boolean functions.

Logic Diagram of Priority Encoder

4.12 Multiplexer: (Data Selector)

 A multiplexer or MUX, is a combinational circuit with more than one input line, one output

line and more than one selection line. A multiplexer selects binary information present from

one of many input lines, depending upon the logic status of the selection inputs, and routes it

to the output line. Normally, there are 2n input lines and n selection lines whose bit

combinations determine which input is selected. The multiplexer is often labeled as MUX in

block diagrams.

Block diagram of Multiplexer

91

 A multiplexer is also called a data selector, since it selects one of many inputs and steers the

binary information to the output line.

2-to-1- line Multiplexer:

 The circuit has two data input lines, one output line and one selection line, S. When S=

0, the upper AND gate is enabled and I0 has a path to the output.When S=1, the lower AND

gate is enabled and I1 has a path to the output.

Logic diagram

The multiplexer acts like an electronic switch that selects one of the two sources.

Truth table:

S Y

0 I0

1 I1

4- to-1-line Multiplexer:

 A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one output line.

It is the multiplexer consisting of four input channels and information of one of the channels

can be selected and transmitted to an output line according to the select inputs combinations.

Selection of one of the four input channel is possible by two selection inputs.

4-to-1-Line Multiplexer

92

 Each of the four inputs I0 through I3, is applied to one input of AND gate. Selection lines

S1 and S0 are decoded to select a particular AND gate. The outputs of the AND gate are applied

to a single OR gate that provides the 1-line output.

Function table

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

 To demonstrate the circuit operation, consider the case when S1S0= 10. The AND gate

associated with input I2 has two of its inputs equal to 1 and the third input connected to I2. The

other three AND gates have atleast one input equal to 0, which makes their outputs equal to 0.

The OR output is now equal to the value of I2, providing a path from the selected input to the

output.

 The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1‘S0‘. The data output is

equal to I1 only if S1= 0 and S0= 1; Y= I1S1‘S0. The data output is equal to I2 only if S1= 1

and S0= 0; Y= I2S1S0‘. The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0.
When these terms are ORed, the total expression for the data output is,

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0.

 As in decoder, multiplexers may have an enable input to control the operation of the unit.

When the enable input is in the inactive state, the outputs are disabled, and when it is in the

active state, the circuit functions as a normal multiplexer. This circuit has four multiplexers,

each capable of selecting one of two input lines. Output Y0 can be selected to come from either

A0 or B0. Similarly, output Y1 may have the value of A1 or B1, and so on. Input selection line,

S selects one of the lines in each of the four multiplexers. The enable input E must be active

for normal operation. Although the circuit contains four 2-to-1-Line multiplexers, it is

viewed as a circuit that selects one of two 4-bit sets of data lines. The unit is enabled when

E= 0. Then if S= 0, the four A inputs have a path to the four outputs. On the other hand, if

S=1, the four B inputs are applied to the outputs.

The outputs have all 0‘s when E= 1, regardless of the value of S.

93

Quadruple 2-to-1 Line Multiplexer:

Application:

 The multiplexer is a very useful MSI function and has various ranges of applications in

data communication. Signal routing and data communication are the important applications of

a multiplexer. It is used for connecting two or more sources to guide to a single destination

among computer units and it is useful for constructing a common bus system. One of the

general properties of a multiplexer is that Boolean functions can be implemented by this device.

Implementation of Boolean Function using MUX:

 Any Boolean or logical expression can be easily implemented using a multiplexer. If a

Boolean expression has (n+1) variables, then ‗n‘ of these variables can be connected to the

select lines of the multiplexer. The remaining single variable along with constants 1 and 0 is

used as the input of the multiplexer. For example, if C is the single variable, then the inputs of

the multiplexers are C, C‘, 1 and 0. By this method any logical expression can be implemented.

94

In general, a Boolean expression of (n+1) variables can be implemented using a multiplexer

with 2n inputs.

1) Implement the following boolean function using 4: 1 multiplexer, F (A, B, C) = ∑m (1,

3, 5, 6).

Solution:

Variables, n= 3 (A, B, C) Select lines= n-1 = 2 (S1,

S0) 2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

Apply variables A and B to the select lines. The procedures for implementing the function

are:

• List the input of the multiplexer

• List under them all the minterms in two rows as shownbelow.

The first half of the minterms is associated with A‘ and the second half with A. The given

function is implemented by circling the minterms of the function and applying the following

rules to find the values for the inputs of the multiplexer.

• If both the minterms in the column are not circled, apply 0 to the corresponding input.

• If both the minterms in the column are circled, apply 1 to the corresponding input.

• If the bottom minterm is circled and the top is not circled, apply C to the input.

• If the top minterm is circled and the bottom is not circled, apply C‘ to the input.

Implementation Table:

95

Fig. Multiplexer Implementation

4.13 Demultiplexer:

 Demultiplex means one into many. Demultiplexing is the process of taking information

from one input and transmitting the same over one of several outputs.A demultiplexer is a

combinational logic circuit that receives information on a single input and transmits the same

information over one of several (2n) output lines.

Block diagram of Demultiplexer

96

 The block diagram of a demultiplexer which is opposite to a multiplexer in its operation is

shown above. The circuit has one input signal, ‗n‘ select signals and 2n output signals. The

select inputs determine to which output the data input will be connected. As the serial data is

changed to parallel data, i.e., the input caused to appear on one of the n output lines, the

demultiplexer is also called a ―data distributer‖ or a ―serial-to-parallel converter‖ .

1-to-4 Demultiplexer:

Logic Symbol

 A 1-to-4 demultiplexer has a single input, Din, four outputs (Y0 to Y3) and two select
inputs (S1 and S0). The input variable Din has a path to all four outputs, but the input

information is directed to only one of the output lines. The truth table of the 1-to-4

demultiplexer is shown below.

Truth table of 1-to-4 demultiplexer

Enable S1 S0 Din Y0 Y1 Y2 Y3

0 x x X 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 1

 From the truth table, it is clear that the data input, Din is connected to the output Y0,

when S1= 0 and S0= 0 and the data input is connected to output Y1 when S1= 0 and S0= 1.

Similarly, the data input is connected to output Y2 and Y3 when S1= 1 and S0= 0 and when

S1= 1 and S0= 1, respectively. Also, from the truth table, the expression for outputs can be

written as follows,

97

Logic diagram of 1-to-4 demultiplexer

Y0= S1’S0’Din Y1= S1’S0Din Y2= S1S0’Din Y3= S1S0Din

 Now, using the above expressions, a 1-to-4 demultiplexer can be implemented using four

3- input AND gates and two NOT gates. Here, the input data line Din, is connected to all the

AND gates. The two select lines S1, S0 enable only one gate at a time

and the data that appears on the input line passes through the selected gate to the associated

output line.

1- to-8 Demultiplexer:

 A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y0 to Y7) and three select

inputs (S2, S1 and S0). It distributes one input line to eight output lines based on the select

inputs. The truth table of 1-to-8 demultiplexer is shown below.

98

Truth table of 1-to-8 demultiplexer

Di

n

S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 x X x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

 From the above truth table, it is clear that the data input is connected with one of the

eight outputs based on the select inputs. Now from this truth table, the expression for eight

outputs can be written as follows:

Y0= S2‘S1‘S0‘Din Y4= S2 S1‘S0‘Din Y1= S2‘S1‘S0Din Y5= S2

S1‘S0Din
Y2= S2‘S1S0‘Din Y6= S2 S1S0‘Din Y3= S2‘S1S0Din Y7= S2S1S0Din

 Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer can be

drawn as shown below. Here, the single data line, Din is connected to all the eight AND gates,

but only one of the eight AND gates will be enabled by the select input lines. For example, if

S2S1S0= 000, then only AND gate-0 will be enabled and thereby the data input, Din will

appear at Y0. Similarly, the different combinations of the select inputs, the input Din will

appear at the respective output.

Logic diagram of 1-to-8 demultiplexer

